BookletChart ## Forked Island to Ellender (NOAA Chart 11348) A reduced scale NOAA nautical chart for small boaters. When possible, use the full size NOAA chart for navigation. - ☑ Complete, reduced scale nautical chart - ✓ Print at home for free - ☑ Convenient size - ☑ Up to date with all Notices to Mariners - ☑ United States Coast Pilot excerpts - Compiled by NOAA, the nation's chartmaker. ### **What are Nautical Charts?** Nautical charts are a fundamental tool of marine navigation. They show water depths, obstructions, buoys, other aids to navigation, and much more. The information is shown in a way that promotes safe and efficient navigation. Chart carriage is mandatory on the commercial ships that carry America's commerce. They are also used on every Navy and Coast Guard ship, fishing and passenger vessels, and are widely carried by recreational boaters. ### What is a BookletChart $\stackrel{\text{\tiny TM}}{=}$? This BookletChart is made to help recreational boaters locate themselves on the water. It has been reduced in scale for convenience, but otherwise contains all the information of the full-scale nautical chart. The bar scales have also been reduced, and are accurate when used to measure distances in this BookletChart. See the Note at the bottom of page 5 for the reduction in scale applied to this chart. Whenever possible, use the official, full scale NOAA nautical chart for navigation. Nautical chart sales agents are listed on the Internet at http://www.NauticalCharts.NOAA.gov. This BookletChart does NOT fulfill chart carriage requirements for regulated commercial vessels under Titles 33 and 44 of the Code of Federal Regulations. ### **Notice to Mariners Correction Status** This BookletChart has been updated for chart corrections published in the U.S. Coast Guard Local Notice to Mariners, the National Geospatial Intelligence Agency Weekly Notice to Mariners, and, where applicable, the Canadian Coast Guard Notice to Mariners. Additional chart corrections have been made by NOAA in advance of their publication in a Notice to Mariners. The last Notices to Mariners applied to this chart are listed in the Note at the bottom of page 7. Coast Pilot excerpts are not being corrected. [Coast Pilot 5, Chapter 9 excerpts] (319) Mermentau River empties into the Gulf of Mexico 86 miles W of Atchafalaya Bay Entrance E of Calcasieu Pass. The entrance channel shifts frequently and should be approached with caution. From the Gulf, the Mermentau leads E through Lower Mud Lake and Upper Mud Lake, thence N into the SW side of Grand Lake, out of the N end of Grand Lake to the Intracoastal Waterway and continuing on 32 miles through Lake Arthur to the head of navigation at the junction of **Bayou Nezpique** and **Bayou des Cannes**, where the river is formed. (393) **Grand Lake**, a summer resort on the NE side of Calcasieu Lake, has numerous private piers. (394) **Hackberry**, on the NW side of the lake, is an oil drilling center. Both towns have highway connections to Lake Charles. (395) Calcasieu River and Ship Channel. N of Calcasieu Pass, the ship channel cuts across points of land along the W side of Calcasieu Lake to a junction with the Calcasieu River at Choupique Island. The channel is straight and well marked by lights and lighted ranges. (396) The Intracoastal Waterway crosses the ship channel at the N end of Choupique Island, at the mouth of the **Calcasieu River**, and continues W through **Choupique Cutoff**. N of the intersection with the Intracoastal Waterway, **Industrial Canal** leads NE to a turning basin. From the junction with Industrial Canal, the ship channel follows the natural channel of Calcasieu River to the N side of **Moss Lake**, thence bypassing the river through a landcut about 1 mile long to the W bend of the river just above Haymark Terminal, thence in the natural channel to Rose Bluff, thence through **Rose Bluff Cutoff** and continuing on the same course through a cut across the S end of **Coon Island**; thence, the E or right fork for about 1.5 miles to the port wharves at Port of Lake Charles. Deep water is along midchannel but, unlike most rivers, the deeper water often favors the points rather than the bends. (397) Calcasieu Landing is on the W bank of the Calcasieu River just N of its junction with Choupique Cutoff. A shipyard here has two 2,000-ton floating drydocks which can handle ships up to 200 feet and barges up to 300 feet long and 55 feet wide with drafts of 14 feet for general repairs. A marine railway at the shipyard can handle vessels up to 200 feet. The yard builds tugs, crew boats, and barges up to 200 feet. There are metal, joiner, machine, and welding shops, a floating crane that can handle craft to 60 tons, and tank cleaning facilities. A fuel dock adjoins the shipyard. Diesel fuel is available on a 24-hour basis at the dock or in midstream by barge. The fuel facility monitors VHF-FM channels 13 and 16 continuously. (405) The **Port of Lake Charles**, about 32 miles from the Gulf, is opposite Clooney Island on the E bank of Calcasieu River and the N bank of Contraband Bayou. It is the only major port in W Louisiana. (406) **Lake Charles**, the seat of Calcasieu Parish, is located around the E side of the lake about 34 miles from the Gulf. (461) **Westlake 11347Westlake** is an industrial suburb of the city of Lake Charles on the W side of the Calcasieu River about 2 miles above the Port of Lake Charles wharves. U.S. Route 90 highway bridge that crosses the river and the N part of Lake Charles near Westlake has a fixed cantilever center span with clearance of 95 feet for a width of 380 feet and a clearance of 135 feet for the middle 200 feet of span. Just N of the highway bridge, the Southern Pacific railroad swing bridge has a clearance of 1 foot. The W opening is protected by a fender system and is the prescribed draw; any craft navigating the E opening does so at its own risk. ### **Table of Selected Chart Notes** ### HEIGHTS Heights in feet above Mean High Water. Mercator Projection Scale 1:40,000 at 29°50' North American Datum of 1983 (World Geodetic System 1984) ### SOUNDINGS IN FEET AT MEAN LOWER LOW WATER Regulations for Ocean Dumping Sites are contained in 40 CFR, Parts 220-229. Additional information concerning the regulations and requirements for use of the sites may be obtained from the Environmental Protection Agency (EPA). See U.S. Coast Pilots appendix for addresses of EPA offices. Dumping subsequent to the survey dates may have reduced the depths shown. ### INTRACOASTAL WATERWAY Project Depths 12 feet Carrabelle, FL to Brownsville, TX. The controlling depths are published periodally in the U.S. Coast Guard Local Notice to The Waterway is indicated by a magenta line. Mileage distances shown along the Waterway are in Statute Miles, based on zero at Harvey Look, LA, and are indicated thus: Tables for converting Statute Miles to International Nautical Miles are given in U.S. Coast ### CABLE FERRY All craft should avoid areas where the skin divers flag, a red square with a diagonal white stripe, is displayed. Temporary changes or defects in aids to navigation are not indicated on this chart. See Local Notice to Mariners. Improved channels shown by broken lines are subject to shoaling, particularly at the edges. ### CAUTION Small craft should stay clear of large com-mercial and government vessels even if small craft have the right-of-way. ### CAUTION SUBMARINE PIPELINES AND CABLES Charted submarine pipelines and submarine cables and submarine pipeline and cable areas ____ Cable Area Additional uncharted submarine pipelines and submarine cables may exist within the area of this chart. Not all submarine pipelines and submarine cables are required to be buried, and those that were originally buried may have become exposed. Mariners should use extreme caution when operating vessels in depths of water comparable to their draft in areas where pipelines and cables may exist, and when anchoring, dragging, or trawiling. Covered wells may be marked by lighted or unlighted buoys. ### CAUTION Limitations on the use of radio signals as Limitations on the use of radio signals as aids to marine navigation can be found in the U.S. Coast Guard Light Lists and National Geospatial-Intelligence Agency Publication 117. Radio direction-finder bearings to commercial broadcasting stations are subject to error and should be used with caution. Station positions are shown thus: O(Accurate location) o(Approximate location) Temporary changes or defects in aids to navigation are not indicated on this chart. See Local Notice to Mariners. ### RADAR REFLECTORS Radar reflectors have been placed on many floating aids to navigation. Individual radar reflector identification on these aids has been omitted from this chart. Gas and Oil Well Structures SUBMARINE PIPELINES AND CABLES Charted submarine pipelines and submarine les and submarine pipeline and cable areas Improved channels shown by broken lines are subject to shoaling, particularly at the edges. Gas and Oil Well Structures Uncharted platforms, gas and oil well struc-tures, pipes, piles and stakes can exist within the limits of this chart. ### CAUTION CAUTION Limitations on the use of radio signals as aids to marine navigation can be found in the U.S. Coast Guard Light Lists and National Geospatial-Intelligence Agency Publication 117. Radio direction-Inder bearings to commercial broadcasting stations are subject to error and should be used with caution. Station positions are shown thus: ①(Accurate location) o(Approximate location) CABLE FERRY Cable across the river may be at or near the water surface. Mariners should exercise caution when navigating in this area. / S/ /Wooded ### RADAR REFLECTORS Radar reflectors have been placed on many floating aids to navigation. Individual radar reflector identification on these aids has been omitted from this chart. ### MERMENTAU RIVER The
controlling depth was 9½ feet from the GIWW through Lake Arthur to the junction of Bayous Nezpique and Des Cannes. ; Corrected through NM May 31/08, LNM May 27/08 Survey platforms, signs, pipes, piles, and stakes, some submerged, may exist along the maintained channels. Piles and platforms are not charted where they interfere with a light symbol. Survey platforms, signs, pipes, piles, and stakes, some submerged, may exist along the maintained channels. Piles and platforms are not charted where they interfere with a light symbol. Corrected through NM May 31/08, LNM May 27/08 Chart 11348 22nd Ed., May /08 ■ Corrected through NM May 31/08, LNM May 27/08 ### INLAND WATERWAY The controlling depth from Schooner Bayou Canal to the Mermentau River via White Lake and Grand Lake was 4 feet. ### INI AND WATERWAY The controlling depth from Schooner Bayou Canal to the Mermentau River via White Lake and Grand Lake was 4 feet. ### WARNING The prudent mariner will not rely solely on any single aid to navigation, particularly on floating aids. See U.S. Coast Guard Light List and U.S. Coast Pilot for details. ### HURRICANES AND TROPICAL STORMS Hurricanes, tropical storms and other major storms may cause considerable damage to marine structures, aids to navigation and moored vessels, resulting in submerged debris in unknown locations. Charted soundings, channel depths and shoreline may not reflect actual conditions following these storms. Fixed aids to navigation may have been damaged or destroyed. Buoys may have been moved from their charted positions, damaged, such, extinguished or otherwise made inoperative. Mariners should not rely upon the position or operation of an aid to navigation. Wrecks and submerged obstructions may have been displaced from charted locations. Pipelines may have become uncovered or moved. in unknown locations. Mariners are urged to exercise extreme caution and are requested to report aids to navigation discrepancies and hazards to navigation to the nearest United States Coast Guard ### MERMENTAU RIVER The controlling depth from the Swing Bridge at Grand Chenier (29°46°15° N. 93°00' 48° W) to Grand Lake was 3 feet, with shoaling to bare at 29°46'26.00° N. 92°54'52.15° W and 29°46'28.14° N. 92°54'18.34° W; thence 3½ feet through Grand Lake to the Gulf Intracoastal Waterway; thence 9½ feet through Lake Arthur to the junction of Bayous Nezpique and Des Cannes. ### CAUTION WARNINGS CONCERNING LARGE VESSELS WARNINGS CONCERNING LARGE VESSELS The 'Bules of the Road' state that recreational boats shall not impede the passage of a vessel that can navigate only within a narrow channel or fairway. Large vessels may appear to move slowly due to their large size but actually transit at speeds in excess of 12 knots, requiring a great distance in which to maneuver or stop. A large vessel's superstructure may block the wind with the result that saliboats and saliboards may unexpectedly find themselves unable to maneuver. Bow and stem waves can be hazardous to small vessels. Large vessels may not be able to see small oraft close to their bows. ### RULES OF THE ROAD (ABRIDGED) (ABRIDGED) Motoriess craft have the right-of-way in almost all cases. Sailing vessels and motorboats less than sixty-five feet in length shall not hamper, in a narrow channel, the safe passage of a vessel which can navigate only inside that channel. A motorboat being overtaken has the right-of-way. Motorboats approaching head to head or nearly so should pass port to port. When motorboats approach each other at right angles or obliquely the host on the right has the right-of-way in most obliquely, the boat on the right has the right-of-way in most cases. Motorboats must keep to the right in narrow channels when safe and practicable. Mariners are urged to become familiar with the complete text of the Rules of the Road in U.S. Coast Guard publication "Navigation Rules." ### MERMENTAU RIVER MEHMENTAU HIVEH The controlling depth from the Swing Bridge at Grand Chenier (29°46°15° N, 93°00'48° W) to Grand Lake was 3 feet, with shoaling to bare at 29°46'26.00° N, 92°54'52.15° W and 29°46'28.14° N, 92°54'18.34° W; thence 3½ feet through Grand Lake to the Gulf Intracoastal Waterway; thence 9½ feet through Lake Arthur to the junction of Bayous Nezpique and Des Cannes. Feb 1997 - Jan 2009 COLREGS: International Regulations for Preventing Collisions at Sea, 1972. Demarcation lines are shown thus: ————— ### TIDAL INFORMATION Predicted times for high and low tide at the Mermentau River entrance may be obtained by subtracting 1 hour and 54 minutes for high water and 59 minutes for low water from the times listed for Galveston, Texas in the tide table. In the Intracoastal Waterway, between Forked Island and Ellender, the periodic tide is negligible. ### AUTHORITIES Hydrography and topography by the National Ocean Service, Coast Survey, with additional data from the Corps of Engineers, Geological Survey, and U.S. Coast Guard. # NAUTICAL CHART 11348 INTRACOASTAL WATERWAY THE NATION'S CHARTMAKER SINCE 1807 ### LOUISIANA # FORKED ISLAND TO ELLENDER Including the Mermentau River, Grand Lake, and White Lake Chart 11348 22nd Ed., May /08 ■ Corrected through NM May 31/08, LMM May 27/08 Published at Washington, D.C. U.S. DEPARTIMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE COAST SURVEY Mercator Projection Scale 1:40,000 at 29°50' North American Datum of 1983 (World Geodetic System 1984) SOUNDINGS IN FEET AT MEAN LOWER LOW WATER HEIGHTS Heights in feet above Mean High Water NAUTICAL CHART DIAGRAM ### AUTHORITIES ABBR Hydrography and topography by the National Ocean Service, Coast Survey, with additional data from the Corps of Engineers, Geological Survey, and U.S. Coast Guard. ### SUPPLEMENTAL INFORMATION Consult U.S. Coast Pilot 5 for important supplemental information. ### CAUTION This chart has been corrected from the Notice to Mariners (NM) published weekly by the National Geospatial-Intelligence Agency and the Local Notice to Mariners (LNM) issued periodically by each U.S. Coast Guard district to the dates shown in the lower left hand corner. Chart updates corrected from Notice to Mariners published after the dates shown in the lower left hand corner are available at naut calcharts.noaa.gov. ### HORIZONTAL DATUM I The horizontal reference datum of this chart on American Datum of 1983 (NAD 83), which for charting purposes is considered equivalent to the World Geodetic System 1984 (WGS 84), Geographic positions referred to the North American Datum of 1927 must be corrected an average of 0.752" northward and 0.518" westward to agree with this chart. ### TIDAL INFORMATION Predicted times for high and low tide at the Mermentau River entrance may be obtained by subtracting 1 hour and 54 minutes for high water and 59 minutes for low water from the times listed for Galveston. Texas in the tide table. In the Intracoastal Waterway, between Forked Island and Ellender, the periodic tide is negligible. ### WARNING The prudent mariner will not rely solely on any single aid to navigation, particularly on floating aids. See U.S. Coast Guard Light List and U.S. Coast Pilot for details. Distress calls for small craft are made on 2182 kHz or This BookletChart was reduced to 75% of the original chart scale. The new scale is 1:53333. Barscales have also been reduced and are accurate when used to measure distances in this BookletChart. SEPTEMBER 2008 JUNE 2008 JULY 2008 AUGUST 2008 Time Ht. Day Day h.m. ft. Time Hi. Day h.m. fi. Time Ht. Dey Time Ht. Day h.m. ft 16 0519 1.4 Se 0929 1.2 1349 1.3 2142 C.0 1 0832 1.7 16 0507 1.5 Su 1953 -0.6 M 2040 -0.4 Tu 2031 -0.9 16 0531 1.4 W 2056 -0.5 1.4 1.3 1.4 -3.5 0.7 1.4 0.8 17 0553 1.3 Th 0951 1.2 1138 1.3 2129 -0.4 2 0609 Sa 1941 1516 2257 2 0428 | 1.8 | 17 0535 | 1.5 H 2010 -0.7 | Tu 2111 -0.1 2 0526 1.7 W 2125 -0.9 1.4 1.1 1.3 -3.2 1.4 0.5 1.4 3 0522 | 1.9 | 18 0604 | 1.5 Tu 2130 -0.8 | W 2144 -0.4 18 06 5 1.3 F 0953 1.2 1243 1.3 2201 -0.4 3 0630 | 1.3 Su | 1138 | 3.9 | 1637 | 1.2 | 2340 | 3.1 18 0540 M 1049 1618 2248 18 0409 1.6 Tr. 1140 0.2 1952 1.8 3 0527 1.4 W 1226 0.4 2005 1.4 3 0612 | 1.6 Th 1033 | 1.4 1312 | 1.5 2219 -0.8 4 0648 1.2 M 1236 3.7 1808 1.1 19 0548 Tu 1132 1748 2323 4 0616 1.9 19 0637 1.4 W 2223 -0.8 Th 2218 -0.4 4 0655 1.5 F 1110 1.3 1428 1.4 2310 -0.6 19 0537 Se 1033 1333 2233 4 0037 Th 0522 1309 2143 1.4 0.3 1.5 20 0657 Su 1125 1431 2305 5 0712 1.8 20 0713 1.4 Th 2319 -0.7 F 2253 -0.9 5 0733 | 1.4 84 | 1212 | 1.1 | 1542 | 1.2 20 0551 1.3 W 1217 C.4 1923 1.2 5 0113 F 0416 1357 1.4 20 0053 Se 0342 1330 3.4 1.2 3.5 6 0608 1.7 6 0210 1.8 21 0136 1.8 Se 1453 0.2 Su 0312 1.9 1439 0.0 21 0750 1.4 3a 2327 -0.3 -0.4 1.3 1.0 21 07 3 1.2 M 1220 0.9 1558 1.0 2336 0.1 6 0059 W 0712 1427 2155 21 0001 Th 0548 1306 2112 6 0000 Su 0803 1333 1715 3.7 7 0014 -0.5 22 0923 1.3 Sa 0900 1.5 Su 22 0726 1.2 Tu 13 2 0.7 1805 0.9 7 0137 1.0 Th 0712 1.2 1519 J.1 22 0040 F 0534 1402 2316 7 0241 1.6 Su 1558 0.2 22 0140 1.9 M 1557 0.0 8 0226 1.2 23 0119 1.4 F 1610 3.0 58 0503 1.5 1504 -C.1 23 00 2 W 0732 1401 2028 8 0112 -0.2 23 0002 -0.1 Su 0942 1.4 M 0648 1.3 8 9136 Tu 9847 1552 2133 0.3 1.1 0.4 0.6 8 0318 | 1.7 | 23 0219 | 1.9 M 1701 | 0.2 | Tu 1717 | 0.1 24 0048 Th 0730 1461 2251 24 0413 1.6 Su 1613 -C.2 9 0213 0.1 M 1012 1.3 1713 0.6 2045 0.9 24 0039 0.1 Tu 0906 1.2 9 0228 0.6 W 0901 1.1 1641 0.2 9 0252 1.1 Sa 1701 -3.1 9 0348 1.7 24 0239 1.8 Tu 1801 0.2 W 1829 0.2 10 0321 Tu 1034 1743 2321 25 0119 0.3 W 0916 1.2 1616 0.6 2152 0.8 10 0C17 Th 0407 0906 1722 0.1 8.0 1.1 0.0 10 0329 1.5 Su 1751 -3.1 25 0254 1.7 M 1723 -C.3 IO 0356 1.7 W 1851 0.2 25 0253 1.8 Th 0909 1.5 1130 1.6 1931 0.3 25 0129 0.9 F 07 6 1.2 1543 -0.1 0.4 II 0449 W 1048 1620 26 0206 0.6 Th 0916 1.1 1640 0.2 II 0380 I.8 26 0305 I.7 Th 1933 0.2 F 0625 I.3 II 0405 | 1.5 | 26 0324 | 1.7 M 1836 | -0.2 | Tu 1831 | -0.3 0.7 1.2 0.3 27 00 IB F 03 IS 09 II 17 I7 12 0135 Th 0633 1056 1850 12 0332 1.3 27 0231 1.4 Sa 1835 -0.3 Su 1736 -0.5 12 0436 1.5 27
0350 1.7 Tu 1922 -3.2 W 1933 -C.3 1.5 1.4 1.5 0.3 28 0154 5a 0529 0842 1800 1.3 13 0409 1.4 Su 1910 -0.4 28 03 8 1.6 M 1835 -0.7 13 0454 1.5 W 2002 -3.2 26 0411 1.6 Th 0834 1.5 1204 1.6 2028 -C.2 13 0353 Se 0841 1333 2047 1.5 28 0328 Su 0924 1539 2154 14 0359 1.4 29 0257 1.5 Se 1944 -0.3 Su 1848 -0.7 29 D428 F 0909 1831 2117 14 0359 Su 0905 1447 2123 14 9441 | 1.4 M 1946 -U.4 29 0401 | 1.6 14 1933 -0.7 1.5 29 0335 M 0955 1646 2235 14 D502 In 0921 1121 2037 1.8 1.6 C.0 1.6 -0.2 15 0509 1.4 F 0800 1.3 1241 1.4 2110 -3.1 30 0443 1.5 Sa 0939 1.1 1449 1.5 2202 C.2 30 0342 Tu 1027 1749 2314 15 0497 1.5 90 0349 1.6 Su 2012 -0.4 N 1939 -0.8 15 0500 1.4 Tu 2021 -0.4 30 0440 1.0 W 2029 -0.7 15 0405 M 0937 1559 2201 0.9 1.8 31 05 5 1.5 Th 09 8 1.4 1238 1.5 2122 -0.6 31 D458 Su 1021 1604 2243 1.4 C.9 1.5 PRINT-ON-DEMAND CHARTS AL WARNING On receipt NOAA and its pariner, OceanGrafix, offer this chart updated weekly by NOAA for Notices to Mariners and critical corrections. Charts are printed when ordered using Print-on-Demand technology. New Editions are available 5.9 weeks before their release as traditional NOAA charts. Ask your chart agent about Print-on-Demand charts or contact NOAA at 1-800-584-4683, http://NauticalCharts.gov, help@NauticalCharts.gov, or OceanGrafix at 1-877-56CHART, http://OceanGrafix.com, or help@OceanGrafix.com Additional information can be obtained at nauticalcharts.noaa.gov. | - ox | тов | ER 2008 | | NO | VEMBE | R 2008 | | DE | CEME | R 2008 | | J. | ANUA | RY 2009 | | |------------------------------------|--------------------------|-------------------------------------|---------------------------|------------------------------------|----------------------------|-------------------------------------|--------------------------|------------------------------------|---------------------------|------------------------------------|---------------------------|------------------------------------|---------------------------|------------------------------------|---------------------------| | Time | Нŧ. | T Ime | Ht. | Time | н. | Time | Ht. | Time | Ht. | Time | Ht. | Time | Нt. | Time | Ht. | | Day
h.m. | ft. | Day
h.m. | ft. | Day
h.m. | 91. | Day
h.m. | rt. | Dey
h.m. | Гt. | Day
h.m. | ft. | Day
h.m. | ft. | Day
h.m. | ft. | | I 0345
W 1059
1852
2353 | 1.6
0.4
1.8
1.5 | 16 0232
Th 1027
1847
2335 | 1.7
0.0
2.1
1.7 | 1 1132
Se 2037
2351 | 1:7 | 16 02 4
Su 1159
21 2 | 1.8
-0.4
1.8 | I 0146
M 1144
2106
2339 | 1.4 | 16 0020
Tu 0354
1249
2114 | 1.1
1.2
-c.5 | 1 0108
Th 0319
1223
2034 | 0.5
0.7
-0.2
0.9 | 15 0244
F 0857
1416
2024 | 0.6
0.3
0.7 | | 2 0337
Th 1133
1956 | 1.6
0.3
1.8 | 17 0232
F 1115
2000 | 1.8
-0.1
2.1 | 2 0147
Su 1213 | 0.2 | 17 0037
M 0241
1301
2222 | 1.6
1.7
0.3
1.7 | 2 D156
Tu 1229
2152 | 1.3
-9.1
1.3 | 17 0225
W 0529
1348
2144 | C.9
-C.2
1.1 | 2 0228
F 0544
1258
2045 | 0.5
0.8
1.0
8.0 | 17 0349
So 1117
1552
2035 | -0.2
0.7
0.6
0.7 | | 3 9030
F 0258
1211
2109 | 1.5
1.7
0.3
1.8 | 18 0019
Se 0233
1210
2124 | 1.8
1.9
-0.1
2.0 | 3 0207
M 1300 | 0.2 | 18 140B
Tu 2309 | 1.6 | 3 1302
W 2223 | 9.D
1.S | 18 0410
Th 0758
1453
2207 | C.8
C.2
1.D | 3 0319
Sa 0918
1339
2046 | 0.3
0.5
0.3 | 18 0445
Su 1346 | 0.8 | | 4 255
Se | 0.3 | 19 1312
Su 2304 | -0.1
2.0 | 4 0212
Tu 1952 | 0.3 | 19 1524
W 2337 | 0.2 | 4 1346
Th 2241 | 0.2 | 19 0507
F 1034 | C.4
C.6 | 4 G402
Su 1144
1436
2034 | 0.8
0.5
0.5 | 19 0536
M 1505 | -0.5
1.0 | | 5 0208
Su 1348 | 0.4 | 20 1424
M | 5.1 | 5 0028
W 1419 | 1.6
0.4 | 20 0620
Th 0929
1646
2355 | 1.1
1.2
0.5
1.4 | 5 1436
F 2251 | 0.4 | 20 0551
5a 1257
1511
2237 | C.1
C.9
C.7
C.9 | 5 0446
M 1030
1627
1955 | -0.3
0.9
0.5 | 20 0622
Tu 1564 | 1.0 | | 6 0235
M 1450 | 0.4 | 21 003D
Tu 1544 | 0.2 | 6 003D
Th 1551 | 0.5 | 21 0542
F 1154
18 0 | 0.8
1.2
0.7 | 6 D615
Se 1055
1542
2255 | 0.6
0.6
0.6 | 21 0829
Su 1437
1959
2242 | -C.2
1.1
C.8
C.9 | 6 Q533
Tu 1435 | -0.3 | 21 0708
W 1635 | -0.7
1.0 | | 7 0251
Tu 1559 | 0.5 | 22 0104
W 1707 | 1.8
0.4 | 7 0036
F 1637 | 0.7 | 22 0009
\$# 07 1
1343
1928 | 0.5
1.3
0.9 | 7 0559
Su 1254
1712
2254 | 0.3
1.0
0.8
1.1 | 22 0703
N 1539 | 1.2 | 7 0624
W 1526 | -0.8
1.2 | 22 0746
Th 1708 | -0.7
1.0 | | 8 0236
W 1706 | 1.8
0.5 | 23 0121
Th 0729
1043
1822 | 1.7
1.4
1.5
0.6 | 8 0041
Se 0718
1211
1804 | 1.5
1.0
1.3
0.8 | 23 0020
Su 0740
1503
2039 | 1.3
0.2
1.4 | 8 0620
M 1413
1859
2249 | 0.0 | 23 0798
Tu 1824 | -C.5
1.2 | 8 0717
Th 1813 | -1:3 | 23 0824
F 1728
2119
2355 | -0.7
0.9
0.8
0.9 | | 9 0220
Th 1803 | 0.5 | 24 0134
F 0743
123B
1927 | 1.6
1.2
1.5
0.8 | 8 0045
Su 0711
1341
1911 | 1.4
0.7
1.4
1.0 | 24 0027
M 0807
1602
2146 | 1.3
0.0
1.5
1.2 | 9 0652
Tu 1514
2034
2244 | -0.2
 .4
 .1
 .2 | 24 0807
W 1700 | -C.6 | 9 0811
F 1658
2102 | -1.1
1.3
1.1 | 24 0856
Sa 1740
2042 | -0.7
0.9
0.6 | | 10 0218
F 0831
1121
1853 | 1.7
1.4
1.5
0.6 | 25 0145
\$6 0806
1407
2023 | 1.6
0.9
1.6
1.0 | 10 0047
M 0730
1452
2015 | 1.4
0.4
1.6
1.2 | 25 0029
Tu 0833
1649 | -0.1
1.5 | ID 0734
W 1606 | -0.6
1.6 | 25 0638
Th 1730 | -0.6
1.2 | 10 0006
Se 0805
1740
2127 | -1.2 | 25 0052
Su 0929
1752
2109 | 0.9
-0.7
0.9
0.8 | | 11 0220
Se 0800
1300
1940 | 1.8
1.3
1.5
0.8 | 26 0154
Su 0634
1520
2115 | 1.5
0.6
1.7
1.2 | 11 0047
Tu 0801
1554
2115 | 1.4
0.1
1.8
1.4 | 26 0859
W 1727 | -0.2 | II 0826
Th 1700 | -0.B
8.1 | 28 0910
F 1759 | -C.7 | 11 0124
Su 0958
1818
2209 | 1.2
1.1
0.9 | 26 0139
M 0959
1807
2153 | 0.9
-0.6
0.8
0.7 | | 12 0224
Su 0809
1418
2025 | 1.6
1.6
0.9 | 27 0201
M 0900
1621
2203 | 1.5
0.4
1.8
1.3 | 12 0049
W 0639
1652
2209 | -0.2
-0.9
1.5 | 27 0927
Th 1803 | -0.3
1.6 | 12 0909
F 1754
2213 | 1.6 | 27 0942
Sa 1830
2145 | -C.8
1.1
1.0 | 12 0237
M 1050
1851
2300 | 1.1
-0.9
1.3
0.7 | 27 0227
Tu 1028
1823
2241 | 0.8
-0.5
0.8
0.6 | | 13 0228
M 0833
1528
2112 | 1.6
0.7
1.8 | 28 0206
Tu 0926
1714
2249 | 1.5
0.3
1.8
1.5 | 13 0054
Th 0922
1750
2251 | 1.6
-0.4
2.0
1.6 | 28 0957
F 1840 | -0.3
1.5 | 13 D049
Sa 1002
1849
2235 | .4
 .D
 .5 | 28 0101
Su 1015
1901
2204 | -C.8
-I.I
I.D | 13 G252
Tu 1140
1920 | 1.3
-0.7
0.9 | 28 0322
W 1057
1838
2330 | 0.8
-0.4
0.8
0.5 | | 14 0230
Tu 0906
1634
2200 | 1.6
0.4
1.9
1.4 | 29 0206
W 0953
1802
2329 | 1.6
3.2
1.8
1.5 | 14 0110
F 1010
1852
2323 | 1.7
-0.5
2.0
1.6 | 29 1031
Sa 1922
2247 | -0.3
1.5
1.3 | 14 0150
Su 1056
1946
2312 | 1.5
-9.9
1.4
1.3 | 29 0135
M 1048
1933
2247 | 1.E
C.5
I.0
C.9 | 14 0015
v 0516
1230
1945 | 0.5
0.8
-0.4
0.8 | 29 0432
Th 1127
1850 | 0.7
-0.2
0.7 | | 15 0232
W 0944
1740
2246 | 1.6
0.2
2.0
1.6 | 30 0157
Th 1022
1849 | 1.6
5.1
1.8 | 15 0139
Sa 1102
1950
2952 | -0.5
-0.5
1.0
1.7 | 30 0122
Su 1107
20 2
2301 | -0.2
 .4
 .3 | IS 0249
M 1152
2035 | 1.4
-0.7
1.3 | 30 0159
Tu 1120
2002
2353 | 1.0
-C.5
1.0
C.8 | 15 0130
Th 0657
1320
2006 | 0.3
0.7
0.0
0.8 | 30 0019
F 0602
1159
1857 | 0.3
0.6
0.7 | | | | 31 1085
F 1936 | 0.1
1.8 | | | | | | | \$1,0220
W 1152 | 6.9
-6.4 | | | 31 0107
Sa 0751
1234
1853 | 0.6
0.3
0.7 | | | | Pre | rdicted 1
To pr | mes and height
edict local tide. | apply I | h and low w
he time differ | eter-Easte
rence liste | n Stendard Ti
fin the fac⊪b | me. For
tebulati | Devilight Sevi
ons to those | ng time, i
tide predi | idd i hour.
ctions | | | | |------------------------------------|---------------------------|------------------------------------|---------------------------|-------------------------------------|---------------------------|------------------------------------|---------------------------|------------------------------------|---------------------------|------------------------------------|---------------------------|-----------------------------------|---------------------------|------------------------------------|---------------------------| | FEBRUARY 2009 | | | | MARCH 2009 | | | APRIL 2009 | | | MAY 2009 | | | | | | | Time
Dey
h.m. | Hl.
ft. | Da ₎
h.m. | HL.
ft. | Day
F.m. | HI. | Day
h.m. | nt. | Day
h.m. | | Day
Day | HL.
Ft. | Day
h.m. | HL. | Day
h.m. | HL.
ft. | | I 0158
Su 0953
1813
1835 | 0.1
0.5
0.5
0.8 | 15 0332
M 1350 | 1.0 | 1 0C22
Su 0823
1234
1658 | -0.2
1.0
0.8
1.0 | 16 0124
M 1030 | -0.2
1.3 | I 0149
W 1132 | -3.3
1.5 | 18 0219
Th 1301 | 1.4 | I 0248
F 1140 | 0.5 | 16 0212
Se 1117 | 0.3 | | 2 0254
M 1801 | -D.4
0.8 | 17 0435
Tu 1505 | 1.0 | 2 0113
M 1001
1315
1640 | -0.3
 -0
 -0 | 17 02 9
Tu 1304 | 1.3 | 2 0302
Th 1255 | -3.2
1.5 | 17 D325
F 1319 | C.3
1.4 | 2 0406
Se 1212
1838
2224 | 1.4 | 17 0306
Su 1136
1929
2225 | 0.5
1.3
0.9
1.0 | | 3 0356
Tu
1714 | -0.6
1.0 | 18 0537
W 1555 | 1.1 | 3 9213
Tu 1155
1355
1627 | -0.4
 .2
 .1
 .2 | 18 0325
W 1455 | -0.1
1.3 | 3 0424
F 1334 | -3.1
1.4 | 18 0436
Sa 1324 | 1.4 | 3 0531
Su 1239
1901 | 0.5
1.4
0.8 | IB 0410
M 1148
1851 | 0.7
1.3
0.7 | | 4 0501
W 1452 | -P:/ | Th 1633 | -0.4
1.0 | 4 0323
W 1400 | -0.5
1.2 | 19 0439
Th 1532 | 1.3 | 4 Up46
Se 1356
1926
2316 | 1.4 | 19 0543
Su 1331
1955
2355 | 1.3
1.0
1.2 | 4 0029
M 0652
1250
1931 | 0.7
1.3
0.5 | 19 0032
Tu 0530
1154
1851 | 0.9
1.2
0.5 | | 5 0608
Th 1633 | -0.9 | 25 0723
F 1646 | 1.0 | 5 0440
Th 444 | -0.5
1.3 | 20 0549
F 1593 | 1.2 | 5 0659
9u 1412
1947 | 1.2
1.3
1.9 | 20 0642
M 1338
1943 | C.8
C.8 | 5 0203
Tu 0808
1304
2002 | 0.9
1.3
0.3 | 20 0156
W 0669
1155
1910 | 1.3
1.0
1.2
0.2 | | 6 0709
F 1608
2003
2308 | 1.0 | 21 0805
Sa 1642
2034 | -0.4
1.0
0.9 | 6 0556
F 1507 | -0.5
1-3 | 21 0646
Sa 15 8
2039
2323 | 0.0
1.2
1.0 | 5 0102
M 0802
1426
2019 | 1.3
1.3
1.3 | 21 0122
Tu 0736
1344
1963 | 1.2
0.7
1.2
0.5 | 6 0318
W 0913
1315
2033 | 1.3 | 21 0259
Th 0825
1150
1999 | 1.5
1.2
1.3
-0.1 | | 7 0909
Se 1638
2026 | 1.0 | 22 0019
Su 0840
1641
2038 | 1.0
-0.4
0.9
0.8 | 7 0705
Se 1526
1950 | -0.5
1.2
1.0 | 22 0733
Su 15 4
20 8 | 0.1
1.1
1.0 | 7 0225
Tu 0859
1442
2054 | 1.4
3.5
1.2
3.4 | 22 0233
W 0827
1348
2015 | 1.4
0.9
1.2
0.4 | 7 0418
Th 1017
1323
2104 | 1.7 | 22 0353
F 2015 | -0.3 | | 8 0043
Su 0903
1704
2103 | 1.1
-0.9
1.0
8.0 | 23 0122
M 0911
1647
2100 | 1.0
-0.3
0.9
0.7 | 8 0002
Su 0805
1544
2024 | 1.2
-0.4
1.1
0.0 | 23 0046
M 06 2
15 8
2027 | 0.2 | 8 0337
W 0952
1455
2126 | 1.5 | 23 0335
Th 0919
1350
2044 | 1.5
1.0
1.3
0.1 | 8 0509
F 1122
1322
2134 | 1.7
1.3
1.4
-0.2 | 23 0443
Se 2057 | 1.8 | | 9 0203
N 0954
1727
2158 | 0.8
0.9
0.6 | 24 0222
Tu 0940
1656
2144 | 1.0
-0.2
0.9
0.6 | 9 0131
M 0900
1800
2105 | -0.2
1.1
0.6 | 24 0158
Tu 0848
1524
2049 | 0.3
1.1
0.6 | 9 0442
Th 1042
1506
2202 | 1.6
1.0
1.2
3.0 | 24 0432
F 1010
1349
2119 | 1.7
1.2
1.3
-C.1 | 9 0554
Sa 2206 | -0.2 | 24 0534
Su 2143 | -0.6 | | ID 0320
Tu 1042
1747
2252 | 1.0
-0.5
0.9
0.4 | 25 0323
W 1011
1706
2220 | 0.9
-0.1
6.9
6.4 | 10 0250
Tu 0949
1615
2147 | 1.0
1.0
0.4 | 25 0303
W 0924
1531
21 7 | 0.4
1.1
0.4 | 10 0541
F 1135
1512
2236 | .6
 .
 .3
-J. | 25 0527
Se 1100
1348
2159 | 1.8
1.3
1.4
-C.3 | 10 0837
Su 2240 | -0.2 | 25 0627
M 2233 | 1.9
-0.6 | | II 0438
W 1129
1807
2346 | 0.2
8.0
9.0 | 26 0429
Th 1043
1714
2250 | 9.9
0.1
0.9
0.2 | II 0404
w IC37
IE31
2230 | 1.3
0.2
1.0
0.2 | 26 0406
Th 1002
1535
2149 | 1.3
0.6
1.1
0.2 | 11 0636
Sa 1232
1509
2012 | 1.8
1.2
1.3
-3.1 | 26 0623
Su 2245 | 1.8
-C.4 | II 0721
M 2316 | -0.7 | 26 0722
Tu 2326 | 8.1
9.0- | | 12 0600
Th 1215
1824 | 0.9
0.1
0.8 | 27 0539
F 1117
1717
2338 | 0.9
0.9
0.9
0.0 | 12 0516
Th 1123
1645
2311 | 1.3
0.5
1.0
0.0 | 27 0508
F 1043
1537
2225 | 0.8
1.1
0.0 | 12 0734
Su 2350 | -3.1 | 27 0724
M 2335 | -c.4 | 12 0809
Tu 2355 | 0.5 | 27 C618
W | 1.7 | | 13 0041
F 0729
1303
1837 | D.0
D.8
D.4
D.8 | 28 0857
Se 1155
1713 | 0.6
0.9 | 13 0627
F 1211
1655
2353 | 1.3
0.7
1.0
-0.1 | 28 06 1
Se 1125
1534
2305 | 1.5
1.0
1.2
-0.2 | N 0832 | 1.6 | 28 0830
Tu | 1.8 | 13 0903
W | 1.5 | 28 0023
Th 0910 | 1.6 | | 14 0136
Se 0911
1400
1842 | 0.2
8.0
0.5
0.8 | | | 14 0740
Sa 1304
1655 | 1.3
0.9
1.0 | 29 07 8
Su 1209
1525
2352 | 1.5
1.2
1.3
-0.3 | 14 0032
Tu 0942 | 1.5 | 29 0031
W 0942 | -0.3
1.7 | 14 0038
Th 1000 | 0.1 | 29 0122
F 0953 | -0.1
1.5 | | 15 0232
Su 1113 | 0.3 | | | 15 0036
Su 0859 | 0.2 | 30 0831
M 1252
15 8 | 1.5 | 15 0121
W 1111 | 1.5 | 30 0135
Th 1051 | C.2 | 15 0123
F 1047 | 0.2 | 30 0227
Sa 1025
1712
2110 | 0.2
1.4
0.9
1.0 | | | | | | | | 31 0046
Tu 0955 | -0.3
1.5 | | | | | | | 31 0341
Su 1049
1751
2337 | 0.5
1.3
0.6
1.1 | GALVESTON (Galveston Channel), TEXAS 1 U514 M 1108 1828 3 0300 W 0623 H 1638 14 0112 Su 0942 | - 1 | | MAY | 2009 | | |----------------------|-----------------------------------|--------------------------|------------------------------------|---------------------------| | нι. | T ine
Day | HL. | Time
Day | н | | ft. | h.m. | ft. | h.m. | ft | | .2 | I 0248
F 1140 | 0.5 | 16 0212
Se 1117 | 0.3 | | .3 | 2 0406
Se 1212
1836
2224 | 0.2
1.4
1.1 | 17 0306
Su 1136
1929
2225 | 0.5
1.3
0.9
1.0 | | :4
:4 | 3 9531
Su 1233
1901 | 0.5
1.4
0.8 | IB 0410
M 1148
1851 | 0.7
1.3
0.7 | | .5 | 4 0029
M 0652
1250
1931 | 1.3
0.7
1.3
0.5 | 19 0032
Tu 0530
1154
1851 | 0.9
1.2
0.5 | | .8
.3 | 5 0203
Tu 0808
1394
2002 | 0.9
1.3
0.3 | 20 0158
W 0669
1155
1910 | 1.3 | | .2
.2
.5 | 5 0316
W 0913
1315
2033 | 1.3
1.3
0.5 | 21 0259
Th 0625
1150
1939 | 1.5
1.2
1.3
-0.1 | | .4
.9
.2
.4 | 7 0418
Th 1017
1323
2104 | 1.7 | 22 0353
F 2015 | 1.7
-0.3 | | .5
.0
.3 | 8 0509
F 1122
1322
2134 | 1.3
1.4
-0.2 | 23 0443
Se 2057 | 1.8
-0.5 | | .7
.2
.3 | 9 0554
Se 2206 | -0.2 | 24 0534
Su 2143 | -0.6 | | .8
.3
.4 | 10 0637
St 2240 | -0.2 | 25 0627
N 2233 | 1.9
-0.6 | | .8
.4 | H 2316 | -0.1 | 26 0722
Tu 2326 | 1.8
-0.6 | | .8
.4 | 12 0609
Tu 2355 | 0.5 | 27 0818
W | 1.7 | | .в | 13 0903
W | 1.5 | 28 0023
Th 0910 | -0.4
1.6 | | :3
:7 | 14 0038
Th 1000 | 0.1 | 29 0122
F 0953 | -0.1
1.5 | | .2
.5 | 15 0123
F 1047 | 0.2 | 30 0227
Se 1025
1712
2110 | 0.2
1.4
0.9
1.0 | | | | | 31 0341
Su 1049 | 0.5 | | JUNE | 2009 | JULY | 2009 | AUGUS | T 2009 | SEPTEME | BER 2009 | |---|--|--|---|--|---|---|--| | Time His | Time Ht. | Time Ht- | Time Ht. | Time Ht. | Time Ht. | Time Hi. | Time Ht. | | Day
h.m. fi. | Dey
h-m. ft. | Day
h.m. it. | Day
h.m. ft. | | H 1108 1.2
H 1108 1.2
1828 0.3 | 16 0240 3.7
Tu 1000 1.1
1793 3.3 | U230 1.3
W 1831 -0.3 | Th 1705 -0.3 | 1 0424 1.5
Sa 1928 -0.3 | 18 0334 1.6
Su 1935 -0.4 | Tu 0909 1.3
1204 1.4
2023 0.2 | 16 0313 1.6
W 0758 1.4
1259 1.7
2024 0.3 | | 2 0136 1.2
Tu 0657 1.0
1123 1.2
1904 0.0 | 17 0111 1.0
W 0402 3.9
0952 1.1
1755 3.0 | 2 0334 1.4
Th 1911 -0.4 | 17 0246 1.3
F 1755 -0.5 | 2 0501 1.4
Su 2008 -0.3 | 17 0355 1.6
M 0732 1.5
0246 1.6
1334 -0.5 | 2 0419 1.5
W 9901 1.3
 1313 1.4
 2052 0.1 | 17 0329 1.6
Th 0839 1.1
1424 1.7
2116 0.5 | | 3 0300 1.4
W 0633 1.1
1131 1.2
1936 -0.2 | 18 0223 1.3
Th 0639 1.1
0913 1.2
1626 -3.3 | 3 0420 1.5
F 1948 -0.5 | 18 0325 1.5
Sa 1847 -0.7 | 3 0524 1.4
N 2042 -0.3 | 18 0418 1.6
Tu 0756 1.5
 1158 1.6
 2330 -0.4 | 3 0422 1.4
Th 0918 1.2
 1416 1.4
 2120 0.4 | 18 0343 1.5
F 0923 0.8
1543 1.7
2206 0.8 | | 4 0359 1.6
Th 2010 -0.3 | 19 0315 1.5
F 1909 -3.5 | 4 0459 1.5
Se 2023 -0.5 | 19 0406 1.6
Su 1941 -0.8 | 4 0531 1.3
Tu 0937 1.2
1226 1.3
2114 -0.2 | IB 0436 1.5
W 0342 1.3
1331 1.6
2122 -0.3 | 4 0429 1.4
F 0946 1.3
1519 1.4
2147 0.5 | 19 0358 1.5
Se 1007 0.6
1656 1.8
2255 1.0 | | 5 0445 1.6
F 2041 -0.4 | 20 0401 1.6
Se 1954 -3.7 | 5 0532 1.4
8u 2057 -0.5 | 20 0446 .6
M 0841 .4
 101 1.5
 2035 -0.8 | 5 0596 1.3
W 0995 1.2
1325 1.3
2142 -0.1 | 20 0456 1.4
Th 0334 1.1
1455 1.5
2212 0.0 | 5 0438 1.4
Se 1017 0.3
1624 1.4
2216 0.7 | 20 04 2 1.5
Su 1050 0.4
18 3 1.8
2347 1.3 | | 6 0524 1.6
Sa 2112 -0.4 | 21 0447 1.7
Su 2043 -3.8 | 8 0558 1.4
M 2129 -0.4 | 21 0521 1.5
Tu 0903 1.4
1240 1.5
2129 -0.6 | 6 0545 1.3
Th IDIC 1.1
1421 1.2
2208 0.0 | 21 0515 1.4
F 1327 0.8
1818 1.5
2300 0.3 | 6 0446 1.4
Su 1660 0.7
1732 1.4
2248 0.9 | 21 0423 1.6
M 1135 0.2
1929 1.8 | | 7 0559 I.6
Su 2144 -0.4 | 22 0534 1.7
M 2134 -3.9 | 7 0620 1.3
Tu 1032 1.2
1219 1.3
2200 -0.4 | 22 0553 .4
W 0947 .3
 1404 .4
 2220 -0.6 | 7 0558 1.3
F 1052 1.0
1523 1.1
2235 0.1 | 22 0533 1.3
5a 1122 0.6
1744 1.4
2349 0.6 | 7 G449 1.4
M 1125 0.5
1846 1.4
2322 1.1 | 22 0045 1.5
Tu 0424 1.6
1221 0.2
2051 1.8 | | 8 0632 1.5
M 2217 -0.3 | 23 0621 1.6
Tu 1029 1.4
1317 1.5
2227 3.0 | 8 0641 1.3
W 1092 1.1
1313 1.2
2201 0.3 | 23 0621 1.3
Th 1045 1.1
1528 1.3
2011 0.3 | 8 0811 1.2
Sa 1135 0.8
1836 1.0
2303 0.3 | 28 0549 1.3
Su 1216 0.4
1915 1.4 | 8 0444 1.4
Tu 1204 0.3
2008 1.5
2366 1.3 | 23 1311 0.2
W 2229 1.8 |
| 9 0708 1.5
Tu 2252 -0.3 | 24 0705 1.5
W 10 1.3
 143 1.4
 2320 - 3.6 | 9 0703 1.3
Th 1119 1.0
1350 1.1
2300 -0.2 | 24 0646 1.3
F 1150 0.6
1658 1.2 | 9 0622 1.2
Su 1216 0.7
1804 1.0
2332 0.5 | 24 0040 0.9
M 0503 1.3
1311 0.2
2056 1.4 | 9 0429 1.5
W 1250 0.2
2143 1.6 | 24 1408 0.3
Th | | 10 0745 1.4
W 2327 -0.2 | 25 0744 1.4
Th 215 1.2
 553 1.3 | 10 0724 1.2
F 2329 -0.1 | 25 0000 0.0
\$a 0708 1.2
1259 0.8
1840 1.1 | 10 0828 1.2
M 1257 0.5
1946 1.0 | 25 0143 1.2
Tu 0808 1.3
1408 0.1
2256 1.5 | 10 0027 1.5
Th 0415 1.8
1344 0.1 | 25 0055 1.8
F 1514 0.3 | | 11 0822 1.4
Th | 26 0013 -3.4
F 0017 1.3
1340 1.0
1738 1.1 | I 0744 I.2
Se 2356 0-I | 26 0050 0.3
5u 0728 1.2
1406 0.3
2037 1.0 | 11 0003 0.8
Tu 0624 1.2
1341 0.3
2141 1.1 | 26 1509 0.0
W | II 0415 1.7
F 1449 0.0 | 26 0220 1.8
5a 1627 0.4 | | 12 0002 -0.1
F 0855 1.3 | 27 0108 3.0
Sm 0844 1.2 | 12 0800 1.2
Su 1434 0.6
1833 0.7 | 27 0145 0.7
M 0745 1.1
1510 0.1
2252 1.1 | 12 0033 1.0
% 0804 1.2
1430 0.1 | 27 0115 1.6
Th 1813 0.0 | 12 0428 1.3
Se 1502 0.3 | 27 0257 1.8
Su 1734 0.4 | | 13 0036 0-1
Se 0923 1-3 | 28 0204 3.3
Su 0907 1.2 | 13 0028 0.4
M 0810 1.1
1507 0.5
2116 0.7 | 28 0909 .0
Tu 0754 .1
1609 -0 .1 | 13 0536 1.3
Th 1526 -0.1 | 26 0236 1.6
F 1717 0.0 | 13 0400 1.8
Su 1716 0.3 | 28 0304 1.7
M 1681 0.5 | | 14 0112 0.3
Su 0943 1.2 | 29 0315 3.7
M 0926 1.1 | 14 0059 0.8
Fu 0809 1.1
1541 0.2 | 29 0119 1.3
W 1704 -0.2 | 14 0521 1.5
F 1828 -0.2 | 29 0328 1.6
Sa 1816 0.0 | 14 0251 1.3
м 1826 0.3 | 29 0255 1.7
Tu 0847 1.4
 114 1.5 | | 15 0150 0.5
M 0958 1.2
1731 0.6
2311 0.8 | 30 0040 1.1
Tu 0517 1.0
0040 1.1
1749 -3.2 | 15 0749 1.1
W 1621 0.0 | 30 0245 1.4
Th 1756 -0.3 | 15 0504 1.8
Sa 1732 -0.4 | 30 0400 1.6
Su 1906 0.1 | 15 0300 1.7
Tu 0726 1.6
1113 1.7
1928 0.1 | 30 0251 1.6
W 0831 1.4
1242 1.6
1953 0.7 | | | | | 31 0339 1.5
F 1844 -0.3 | | 21 0426 1.6
M 1348 0.1 | | | Printed at reduced scale. 1000 0 | ox. | CTOBE | R 2009 | | |------------------------------------|--------------------------|------------------------------------|--------------------------| | Time
Day | HI. | Time
Day | Ht. | | h.m. | ft. | h.m. | ft. | | I 0253
Th 0634
I863
2026 | 1.6
1.2
1.6
0.8 | 15 0210
F 0830
I514
2117 | 1.6
0.7
1.8
1.1 | | 2 0258
F 0850
1458
2059 | 1.6 | 17 0224
3e 0906
1623
2211 | 1.6
0.4
1.9
1.3 | | 3 0304
Sa 0912
1558
2133 | 1.6
0.8
1.7 | 18 0236
Su 0943
1726
2304 | 1.6
0.2
2.0
1.5 | | 4 0309
Su 0940
1658
2209 | 1.6
0.6
1.7
1.3 | 19 0246
M 1020
1826 | 1.6
0.1
2.0 | | 5 0311
N 1011
1758
2246 | 1.6
0.4
1.8
1.5 | 20 0001
Tu 0246
1059
1926 | 1.6
1.7
0.1
1.9 | | 6 0307
Tu 1048
1901
2322 | 1.5
0.9
1.5 | 21 1140
W 2031 | 0. I
1. g | | 7 0800
W 1130
2013
2354 | 1.7
0.1
1.9
1.7 | 22 1225
Th 2152 | 0.2
1.8 | | 8 0239
Th 1220
2138 | 1.8
0.1
1.9 | 23 1315
F | 0.3 | | 9 0019
F 0310
131a | 1.8 | 24 0 1
5e 4 3 | 0.4 | | 10 0326
Se 1426 | 9.1 | 25 013 6
Su 1517 | 1.7 | | II 0308
Su 1542 | 0.2 | 26 0116
M 1625 | 1.7
6.6 | | 12 0118
M 1702 | 1.8 | 27 0112
Tu 1729 | 1.6
0.7 | | 13 0130
Tu 0715
1023
1816 | 1.8
1.5
1.6
0.5 | 29 0113
W 0758
1149
1824 | 1.6
1.2
1.3
0.8 | | 14 0143
W 0724
1225
1921 | 1.7
1.3
1.5
0.7 | 29 0118
Th 0749
1318
1815 | 1.4 | | IS 0137
Th 0754
1357
2021 | 1.6
1.7
0.9 | 30 0123
F 0755
1428
2002 | 0.8
1.0
1.1 | | | | 31 0128
Sa 0812
1527
2048 | 1.5
0.5
1.7
1.3 | 29° 50' LOGARITHMIC SPEED SCALE POLLUTION REPORTS POLLUTION REPORTS POLLUTION REPORTS Via 1-800-424Via 1-800-424Via 1-800-424-To find SPEED, place one point of cividers on distance run (in any unit) and the other on minutes run. With Report all spills of oil and hazardous substances to the National Response Center via 1-800-424-8602 (toll free), or to the nearest U.S. Coast Guard facility if telephone communication is impossible (33 CFR 153). right point on 60 and left point will then indicate speed in units per hour. Example: with 4.0 nautical miles run in SCALE 1:40,000 Nautical Miles page Statute Miles Yards Joins p 1000 2000 LONGITUI CAUTION Gas and Oil Well Structures Uncharted platforms, gas and oil well structures, pipes, piles and stakes can exist within the limits of this chart. CAUTION In the dry summer months navigation in the takes may be hampered by the lowering of the water level due to irrigation operations. -4-Marsh And manufacturity and manufacturity ٦٠,-Joins page 14 > CALE 1:40,000 Nautical Miles > > 3000 Yards 2000 1000 See Note on page 5. 4000 North American Datum of 1983 (World Geodetic System 1984) SOUNDINGS IN FEET AT MEAN LOWER LOW WATER HEIGHTS Heights in feet above Mean High Water. SIDE B ### NAUTICAL CHART DIAGRAM NSN 7642014010222 NGA REFERENCE NO. 11XHA11348 11348 22nd Ed., May /08; Corrected through NM May 31/08, LNM Ma Joins page 16 Joins page 18_ Joins page 20_ Joins page 10 11348 22nd Ed., May /08; Corrected through NM May 31/08, LNM Ma Joins page 11 1000 0 Yards ### **EMERGENCY INFORMATION** ### VHF Marine Radio channels for use on the waterways: Channel 6 – Inter-ship safety communications. Channel 9 – Communications between boats and ship-to-coast. **Channel 13** – Navigation purposes at bridges, locks, and harbors. ### Channel 16 – Emergency, distress and safety calls to Coast Guard and others, and to initiate calls to other vessels. Contact the other vessel, agree to another channel, and then switch. **Channel 22A** – Calls between the Coast Guard and the public. Severe weather warnings, hazards to navigation and safety warnings are broadcast here. Channels 68, 69, 71, 72 & 78A – Recreational boat channels. ### **Distress Call Procedures** - 1. Make sure radio is on. - 2. Select Channel 16. - 3. Press/Hold the transmit button. - 4. Clearly say: "MAYDAY, MAYDAY, MAYDAY." - Also give: Vessel Name and/or Description; Position and/or Location; Nature of Emergency; Number of People on Board. - 6. Release transmit button. - Wait for 10 seconds If no response Repeat MAYDAY Call. ### HAVE ALL PERSONS PUT ON LIFE JACKETS!! **Mobile Phones** – Call 911 for water rescue. Coast Guard Group Galveston– 409-766-5620 Coast Guard Station Sabine – 409-971-2194 Coast Guard Atlantic Area Cmd – 757-398-6390 <u>NOAA Weather Radio</u> – 162.400 MHz, 162.425 MHz, 162.450 MHz, 162.475 MHz, 162.500 MHz, 162.525 MHz, 162.550 MHz. <u>Getting and Giving Help</u> – Signal other boaters using visual distress signals (flares, orange flag, lights, arm signals); whistles; horns; and on your VHF radio. You are required by law to help boaters in trouble. Respond to distress signals, but do not endanger yourself. ### NOAA CHARTING PUBLICATIONS Official NOAA Nautical Charts – NOAA surveys and charts the national and territorial waters of the U.S, including the Great Lakes. We produce over 1,000 traditional nautical charts covering 3.4 million square nautical miles. Carriage of official NOAA charts is mandatory on the commercial ships that carry our commerce. They are used on every Navy and Coast Guard ship, fishing and passenger vessels, and are widely carried by recreational boaters. NOAA charts are available from official chart agents listed at: www.NauticalCharts.NOAA.gov. Official Print-on-Demand Nautical Charts — These full-scale NOAA charts are updated weekly by NOAA for all Notice to Mariner corrections. They have additional information added in the margin to supplement the chart. Print-on-Demand charts meet all federal chart carriage regulations for charts and updating. Produced under a public/private partnership between NOAA and OceanGrafix, LLC, suppliers of these premium charts are listed at www.OceanGrafix.com. ### Official Electronic Navigational Charts (NOAA ENCs®) – ENCs are digital files of each chart's features and their attributes for use in computer-based navigation systems. ENCs comply with standards of the International Hydrographic Organization. ENCs and their updates are available for free from NOAA at www.NauticalCharts.NOAA.gov. ### Official Raster Navigational Charts (NOAA RNCs[™]) – RNCs are geo-referenced digital pictures of NOAA's charts that are suitable for use in computer-based navigation systems. RNCs comply with standards of the International Hydrographic Organization. RNCs and their updates are available for free from NOAA at www.NauticalCharts.NOAA.gov. Official BookletCharts[™] – BookletCharts[™] are reduced scale NOAA charts organized in page-sized pieces. The "Home Edition" can be downloaded from NOAA for free and printed. The Internet address is www.NauticalCharts.gov/bookletcharts. Official PocketChartsTM – PocketChartsTM are for beginning recreational boaters to use for planning and locating, but not for real navigation. Measuring a convenient 13" by 19", they have a 1/3 scale chart on one side, and safety, boating, and educational information on the reverse. They can be purchased at retail outlets and on the Internet. Official U.S. Coast Pilot® – The Coast Pilots are 9 text volumes containing information important to navigators such as channel descriptions, port facilities, anchorages, bridge and cable clearances, currents, prominent features, weather, dangers, and Federal Regulations. They supplement the charts and are available from NOAA chart agents or may be downloaded for free at www.NauticalCharts.NOAA.gov. Official On-Line Chart Viewer – All
NOAA nautical charts are viewable here on-line using any Internet browser. Each chart is up-to-date with the most recent Notices to Mariners. Use these on-line charts as a ready reference or planning tool. The Internet address is www.NauticalCharts.gov/viewer. Official Nautical Chart Catalogs – Large format, regional catalogs are available for free from official chart agents. Page size, state catalogs are posted on the Internet and can be printed at home for free. Go to http://NauticalCharts.NOAA.gov/mcd/ccatalogs.htm. Internet Sites: www.Noa.gov, href="